J. Appl. Maths Mechs, Vol. 61, No. 4, pp. 549-552, 1997
© 1997 Elsevier Science Ltd
@ Pergamon Al rights reserved. Printed in Great Britain

PII: S0021-8928(97)00072-5 0021-8928/97 $24.00+0.00
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The method of invariant relations is used to determine conditions for the existence of a linear invariant relation of the Hess type
in a problem of the motion of a heavy rigid body in a magnetic field, taking the Barnett~London effect into account. A special
case is indicated in which the reduced system of differential equations of motion has an additional first integral. © 1997 Elsevier
Science Lid. All rights reserved.

In the classical problem of the motion of a heavy rigid body, Hess [1] found a new solution of the
Euler—Poisson equations which holds for gyroscopies suspended at some point of an axis passing through
the centre of mass and perpendicular to a circular section of the gyration ellipsoid. Sretenskii [2] extended
Hess’ solution to the case of the motion of a heavy gyrostat. It was then established that an invariant
relation of Hess’ type exists in other problems of dynamics. Thus, a new solution was found for the
Kirchhoff equations of the motion of a body in a fluid, which reduces to Hess’ solution under certain
conditions [3]; a class of motions was determined for a Hess gyroscope suspended on a rod [4]; and a
generalization of Hess’s invariant relation was obtained for the problem of the motion of n heavy rigid
bodies hinged together [5].

With regard to the problem of the motion of a body in a magnetic field [6, 7], taking the Barnett—
London effect into account, some cases have been considered in which new algebraic integrals of motion
[8, 9] exist. The study of invariant relations in that problem is therefore of some interest.

1. THE EQUATIONS OF MOTION

It is well known that a “neutral” ferromagnetic material, when rotated, becomes magnetized along
the axis of rotation (the Barnett effect [6]). An analogous phenomenon is observed when a super-
conducting solid is rotated (the London effect). The magnetic moment H is related to the angular velocity
o by the formula H = Be (the operator B has been calculated for bodies of simple shape [7]).

The equations of motion of a gyrostat in a magnetic field, taking the Barnett~London effect into
account, may be written in the form

AD = (A0 + M) X0+ vX(Cv-s—Bw), V=vXw 1.1

These equations admit of first integrals
v.v=1l (Aw+A)-v=k 12)
where w is the angular velocity of the gyrostat, v is the unit vector in the direction of the gravity field,

A is the gyrostatic moment, s is the vector of the gyrostat’s centre of mass, and 4, B and C are symmetric
matrices of order three, 4 being the inertia tensor of the gyrostat relative to its fixed point.

2. HESS-TYPE INVARIANT RELATION
We wish to investigate the conditions under which system (1.1) will admit of an invariant relation
x-s+v-b=og (2.1)
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where x = Aw = (x;, X2, X3) is the angular momentum vector of the gyrostat, b = (b,, by, b3), and 0y is
a constant. We choose the system of coordinates so that the components of the angular velocity have
the form

(l)’ =aux, +a,3x3, l= 1,2
2.2)
®3 = ay3x) +ay3X; + 833X

and so that s = (0, 0, 1). The numbers a;; in (2.2) are the components of the gyration tensor. It then
follows from (2.1) that

X3=0g—-v-b (23)

Let us compute the derivative of (2.3) along trajectories of Eqs (1.1), taking (2.3) into consideration.
We obtain

(ag2 = an)xyxz + X1 (axy — Aaay) + x3(May, ~ aj3x3) + x3(May; — Ayapy) +

+X1 (MY =1V )+ X3 (R13Vy = 1V )+ x3(my3Vy — g3y ) +

H(Cyy = Ci1)ViVy + Cia(VE = V1) + CpaV Vs = CiaV,ovs + (2.4)
+xilay)(byV3 — b3vy) + a3(byv, —byvy) +

+x3[ay5 (byvy = byva) + ans (Byv, — byvy ) +

+x3[a13(byV3 — b3vy) + a3 (byVy — ByV3) +as3(Byv, — byvy)] =0

where

my = Byay + Biza;3,  nyy = Byayy + Bpyay + Bas,

2.5)
ny = Bpay + Bpa;;, 1=1,2

Relation (2.4) must hold on the invariant manifold (2.3). We therefore suppose that in that relation
X3 = 09 — byvy — bv, — byvs. Then the left-hand side of (2.4) is a function of the variables x;, x;, vy, v,
v3. We require that the left-hand side of (2.4) should vanish for all values of these variables. Then,
equating the coefficients of xyx; to zero, we obtain

ax; =dpy (2-6)

Equality (2.6) enables us to choose a moving system of coordinates so that ay; = 0. Then the gyrostat’s
centre of mass will lie on the perpendicular to a circular section of the gyration ellipsoid through the
fixed point, that is, the gyrostat will be a Hess gyroscope [1].

Taking (2.5) and (2.6) into account, we obtain two versions of the conditions under which relation
(2.4) becomes an identity for all values of x4x; and vy, vy, vs.

In version 1 we must supplement the relations

0o =Maya3, Ay =0, ap=ay=0, a,=ay

by =xya3, by =0, by=u9ay, Bp=B,=0

By =goa;3+%0a1, By =xg(af +al)ail, By =-€pay ~%gap (2.7)
Cia=Cp =0, Cy5=ggx0ay,(a,a33 —aj3)

Ciy — Cyp = %€o13(ayas; - af3)

where €y and % are constant parameters, with a further condition A; = 0; in version 2 the condition to
be added to (2.7) is gy = 0. The invariant relation (2.3) will then be

-1
X3 = Mapag;; —%9(a3v; +a;;v3) (2.8)
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This relation enables to reduce the order of the system of equations (1.1) and to write a system for
the variables xy, x;, vy, V2, V3

%) = ay3xi%y — XV (@) B3 + a13B33) + Xl a a3 (~Agdys + Magy — Mgy )+

+ay3%0(ay) — a3V, + g (a3 - ayasy +2ai) V314 Vv, (Cps + %013 By + %oy 3a33B33) +

+VV3[C3 = Cpp +ayy%9(a1383 +a33By3)] -

=113 [say3 + M@,y (Bysays + Byagy)) (29)

iy = =xjayy +x[Asay + Magi (@], - aly - ajja5) +

+V1(%9a13833 — %08y,Gy3 + a3By3 +ay, B3) +

+V3 (208,833 — %oai; — aj3By3 —ay, By )1+

+V{ [0013(%0as — a13B3 — az3Byy) - Gy 1+

+v3 [0y (%0ay,813 + @3By, +ay3Byy) - Cp ]+

+V V3 [%0ay; (%oa3 — ay3Bys ~ @33 B3 ) +

+2oa13(%0@ 3 + @3By +a33B3)+ G - C3]+

+V,[s+0,a,,873 (813By3 + a33 B33 ~ %ga3) - %oz (@yshs + My (@) — az )] -

~V3[Aa1a73 (0011813 + @13 By +a33B13) + %0ay (@y3hs + Ay (@ - a33))]+

+Mayai3laphy + 1y (ay —a33)] (2.10)

V) =a;3Vax) - GyV3X) + Myay)a53ai3V, - ay3xgVa (a13Vy + 1 V3) (211)

V2 = a,Vax; = apan vy +Miay Vs — Aoy dsai v + % (aVy +aVaasv —apvy) - (212)

Vi = ay; (X3V) — X V2) — M@y Vo +a13%gV, (a13V) + a1 Vy) (2.13)

In all these relations allowance must be made for conditions (2.7) for version 1 or 2.
Equations (2.9)-(2.13) have two integrals

(x; + AV, + x5V, + V3 [(Ag +Mja),a50 ) — % (a3V, +a vyl =k (2.14)
vi+vi+vi=1l

which follow from (1.2) when (2.3) holds.

3. A SPECIAL CASE
The above integrals are not enough to reduce the problem tc quadratures. We therefore present an
example in which the existence of the linear integral (2.8) enables us to reduce the problem to
quadratures. Assume that %y = 0,A; =4, = A; =0,B33 = €231 15. Then Eqgs (2.9)-(2.13) become
X) = ay3x %y +(Cyy — Cpp)VyV3 =5V,
Ky =—ap3x; —(Cy3—Cp)VVp +5v,
Vi =ap3VaX) —aViXy, Vo = xi(a Vs —a3Vy)

V3 =a) (X = X V2)
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which, augmented by the integrals

— 2 2 2 _
0V +x,vy =k, vi+vy;+vy=1

which follow from (2.14), admit of a new integral

a"(x|2 +x%)+(C33 —sz)vg —2SV3 =c

When Cy, — C33 = 0 we obtain the classical Hess case [1], which has been studied in analytical and

geometrical settings by Zhukovskii [10], Nekrasov [11] and Kovalev [12].
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