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The method of invariant relations is used to determine conditions for the existence of a linear invariant relation of the Hess type 
in a problem of the motion of a heavy rigid body in a magnetic field, taking the Bamett-London effect into account. A special 
cast is indicated in which the reduced system of differential equations of motion has an additional first integral. Q 1997 Elscvier 
Science Ltd. AU rights reserved. 

In the classical problem of the motion of a heavy rigid body, Hess [l] found a new solution of the 
Euler-Poisson equations which holds for gyroscopies suspended at some point of an axis passing through 
the centre of mass and perpendicular to a circular section of the gyration ellipsoid. Sretenskii [2] extended 
Hess’ solution to the case of the motion of a heavy gyrostat. It was then established that an invariant 
relation of Hess’ type exists in other problems of dynamics. Thus, a new solution was found for the 
Kirchhoff equations of the motion of a body in a fluid, which reduces to Hess’ solution under certain 
conditions [3]; a class of motions was determined for a Hess gyroscope suspended on a rod [4]; and a 
generalization of Hess’s invariant relation was obtained for the problem of the motion of n heavy rigid 
bodies hinged together [5]. 

With regard to the problein of the motion of a body in a magnetic field [6, 71, taking the Barnett- 
London effect into account, some cases have been considered in which new algebraic integrals of motion 
[8,9] exist. The study of invariant relations in that problem is therefore of some interest. 

1. THE EQUATIONS OF MOTION 

It is well known that a “neutral” ferromagnetic material, when rotated, becomes magnetized along 
the axis of rotation (the Bamett effect [6]). An analogous phenomenon is observed when a super- 
conducting solid is rotated (the London effect). The magnetic moment H is related to the angular velocity 
o by the formula H = Bo (the operator B has been calculated for bodies of simple shape [7]). 

The equations of motion of a gyrostat in a magnetic field, taking the Bamett-London effect into 
account, may be written in the form 

Ac;,=(Ao+A)xo+vx(ti-s-&o). ir=vXco 

These equations admit of first integrals 

(1-l) 

u*u=l, (Ao+A)-v=k (1.2) 

where o is the angular velocity df the gyrostat, Y is the unit vector in the direction of the gravity field, 
A is the gyrostatic moment, s is the vector of the gyrostat’s centre of mass, andA, B and C are symmetric 
matrices of order three, A being the inertia tensor of the gyrostat relative to its fixed point. 

2. HESS-TYPE INVARIANT RELATION 

We wish to investigate the conditions under which system (1.1) will admit of an invariant relation 

x-s+v.b=acXo (2.1) 
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where x = Ao = (x1, x2, xs) is the angular momentum vector of the gyrostat, b = (6r, bZ, b3), and as is 
a constant. We choose the system of coordinates so that the components of the angular velocity have 
the form 

01 = allxl + a13x3, 1=1,2 

03 = 93x1+ aux2 + 033x3 
(2.2) 

and so that s = (0, 0, 1). The numbers aq in (2.2) are the components of the gyration tensor. It then 
follows from (2.1) that 

x3 =ao-v.b (2.3) 

Let us compute the derivative of (2.3) along trajectories of Eqs (l.l), taking (2.3) into consideration. 
We obtain 

(a22 - al I )-V2 + XI @23x3 - h I I+ x2(+.+2 - a13x3) + x3(h,au - X2a,,) + 

+cc22 -c~I)v,v, +c& -v;)+ &,v,v, - c,,v,v, + 

+xltal,(b2v3 - qv2)+a,3(b,v2 - bzvl)+ 
+xda22(b3v, -blv3)+a&v2 -b2v,)+ 
+x3 b13(9v3 - b3v2) + a23(b3v1 - hv3) + a3,(&v2 - b2vl )I = 0 

(2.4) 

where 

nil = 4h + 43al3, “13 = ha13 + 92%3 + 93’2339 

nzr = B12ql + &a13, I= I.2 
(2.5) 

Relation (2.4) must hold on the invariant manifold (2.3). We therefore suppose that in that relation 
x3 = oq, - blvl - b2v2 - b3v3. Then the left-hand side of (2.4) is a function of the variables x1, x2, vl, v2, 
v3. We require that the left-hand side of (2.4) should vanish for all values of these variables. Then, 
equating the coefficients of xrx2 to zero, we obtain 

a22 = a11 (2.6) 

Equality (2.6) enables us to choose a moving system of coordinates so that a23 = 0. Then the gyrostat’s 
centre of mass will lie on the perpendicular to a circular section of the gyration ellipsoid through the 
fixed point, that is, the gyrostat will be a Hess gyroscope [l]. 

Taking (2.5) and (2.6) into account, we obtain two versions of the conditions under which relation 
(2.4) becomes an identity for all values of xrx2 and vl, ~2, v3. 

In version 1 we must supplement the relations 

a0 = Qq ,a;:. h2 = 0, al2 = a23 = 0, a,, = a, 

61 =xoa13, 6?=0, b3=xoallr B,2=&y=0 

4 I = coal3 + x0al 1 s 4, = x0 (aft + aF3 >a;:, 43 = -EOaI I - x093 

G2 =C23 =O, Cl3 = EOXOal I (aI 933 - 43 1 

Cl I - C22 = X0E0a13 (al Ia33 - 43) 

(2.7) 

where ~0 and x0 are constant parameters, with a further condition hI = 0; in version 2 the condition to 
be added to (2.7) is E,, = 0. The invariant relation (2.3) will then be 
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This relation enables to reduce the order of the system of equations (1.1) and to write a system for 
the variables xi, x2, vi, ~2, vs 

4 =a13x,x2 -~I~2~~1,~,3+Q,3~33~+~2~~,,~;:~-~2~,3 +$a,, -+,,I+ 

+=l3xo(all -=33)VI+XoGJ:3 -alla33 +24h3 I+ V2Vl(Cl3 + x04343 +xoa,,a33B33)+ 

+v2v3[c33 -c22 +ailxO(u1343 +a,,B33)1- 

-v2u;:[Su,3 ++,,@,393 + 833a33 )1 (2.9) 

x, = -4413 ++n3'1,, +~,&a:l --a; -qp,,)+ 

+vl(xoal3~33 -~o~ll*l3 +a1343 +all43)+ 

+v,(xoa,P33 -w:, -9343 -~,,B,,N+ 

+V:[xoa,3cxo43 - a,343 - 43343 I- c,, I+ 

+V~~~o~,l(~o%~l3+~l341+~3343b G31+ 

+v3[~0~,,(~043 -a,343 -a,,&,)+ 

+~0~,3~~0~,l~13+~i3~1 +a3343)+G, -c331+ 

+vl[S+~,a,la;:(a,3~,3 +a3343 -x043) - ~oq3(~,3~3 +X,(*1, - a33))1- 

-~3~~,~~,~;:~~0~,,~,3 +q3$,+~3343)+~0ql(q3~3 +&(a,, --a,,))]+ 

+~,~,,~;:~~,3~3+~,~~*, -a3311 (2.10) 

+l ="13v2xI -allV3x2 +~,%a33a;:v2 -a33xOv2(u13vl +"11V3) (2.11) 

v2 =~,lV3~,-~,3~lV,+~,~,,v3 -~,~,,~33~i;v, +~0~~,3~,+~11~3~~~33~1-~13~3~ (2.12) 

v3 =a,l(~2~,-~l~2)-~,~,lV2+u13xOv2(a13v,+ulIV3) 
(2.13) 

In all these relations allowance must be made for conditions (2.7) for version 1 or 2. 
Equations (2.9)-(2.13) have two integrals 

(X,+~,)V,+X2V2+V3[(~3+~,*,,*~)-~o(Q,3V,+*,,V3)1=~ (2.14) 

v:+v;+v; =l 

which follow from (1.2) when (2.3) holds. 

3. A SPECIAL CASE 

The above integrals are not enough to reduce the problem to quadratures. We therefore present an 
example in which the existence of the linear integral (2.8) enables us to reduce the problem to 
quadratures. Assume that x0 = 0, hi = & = h3 = 0, B33 = Q&z-~~. Then Eqs (2.9)-(2.13) become 

& = a13XlX2 + CC33 - C22N2V3 - fl2 

i2 = -c-+3x: - (C33 - C22)v1v* + sv, 

VI ="13v2xI -",lV3X2~ Q2 = Xl@JllV3 -93v1) 

v3 =q1(xzv, -x1v,) 
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which, augmented by the integrals 

n,v*+x,v*=k, v:+v;+v:=1 

which follow from (2.14), admit of a new integral 

a,,(X:+X22)+(C33-C22)V:-2SVj=C 

When Cz2 - C33 = 0 we obtain the classical Hess case [l], which has been studied in analytical and 
geometrical settings by Zhukovskii [lo], Nekrasov [ll] and Kovalev [12]. 
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